Skip to Main Content

Electromagnetic and Relativity Theory: Course Outline

Electromagnetic Theory covers the basic principles of electromagnetism: experimental basis, electrostatics, magnetic fields of steady currents, motional e.m.f. and electromagnetic induction, Maxwell's equations, propagation.

Text Book

Google Books

Google Book Search

Google Scholar

Google Scholar Search

Course Outline

  1. Paramagnets. 
  2. Ferromagnetism.
  3. Toques and forces on magnetic dipoles.
  4. Effects of a magnetic field on atomic orbits.
  5. Magnetization. 
  1. Physical interpretation of bound currents.
  2. The magnetic field inside matter. 
  1. A deceptive parallel.
  2. Boundary conditions. 
  1. Magnetic susceptibility and permeability.
  2. Ferromagnetism. 
  1. Ohm’s law, Electromotive force.
  2. Motional emf. 
  1. The induced electric field.
  2. Inductance.
  3. Energy in magnetic fields. 
  1. How Maxwell fixed Ampere’s law.
  2. Maxwell’s equations, Magnetic charge.
  3. Maxwell’s equation in matter.
  4. Boundary conditions. 
  1. Conservation of momentum.
  2. Angular momentum. 
  1. The wave equation. 
  2. Sinusoidal waves.
  3. Boundary conditions; Reflection and transmission.
  4. Polarization. 
  1. Monochromatic plane waves.
  2. Energy and momentum in electromagnetic waves. 
  1. Reflection and transmission at normal incidence.
  2. Reflection and transmission at oblique incidence.
  1. Reflection at a conducting surface. 
  2. The frequency dependence of permittivity. 
  1. TE waves in a rectangular wave guide.
  2. The coaxial transmission line. 
  1. Scalar and vector potentials.
  2. Gauge transformations.
  3. Coulomb gauge and Lorentz gauge.
  1. Jefimenko’s equations. Point charges; Lienard-Wiechert potentials.
  2. The field of a moving point charge.
  1. Magnetic dipole radiation.
  2. Radiation from an arbitrary source. 
  1. Radiation reaction.
  2. The physical basic of the radiation reaction. 
  1. Einstein’s postulates.
  2. The geometry of relativity. 
  3. The Lorenz transformations. 
  4. The structure of space time. 
  1. Relativistic energy and momentum.
  2. Relativistic kinematics, Relativistic dynamics. 
  1. How the fields transform.
  2. The field tensor, Electrodynamics in tensor notation.
  3. Relativistic potentials.